
Real-Time Processing with Apache Spark 

and Apache Flink

This document provides an overview of real-time processing, focusing on two prominent 

frameworks: Apache Spark and Apache Flink. It explores the concepts, architectures, and key 

features of each framework, highlighting their strengths and weaknesses in handling real-

time data streams. The document aims to provide a comparative understanding to aid in 

choosing the appropriate tool for specific real-time processing requirements.

Introduction to Real-Time Processing

Real-time processing, also known as stream processing, involves processing data as it 

arrives, with minimal latency. This contrasts with batch processing, where data is collected 

over a period and processed in bulk. Real-time processing is crucial for applications that 

require immediate insights and actions based on incoming data, such as fraud detection, 

anomaly detection, personalized recommendations, and real-time monitoring.

Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. While primarily 

known for batch processing, Spark also offers a stream processing component called Spark 

Streaming.

Spark Streaming Architecture

Spark Streaming receives data streams from various sources, such as Kafka, Flume, Kinesis, or 

TCP sockets. It divides the incoming data into small batches called micro-batches. These 

micro-batches are then processed by the Spark engine using Resilient Distributed Datasets 

(RDDs). The results of each micro-batch are then combined to produce the final output.

Key Features of Spark Streaming

•

Micro-batch processing:
 Spark Streaming processes data in small batches, providing 

near real-time processing capabilities.

•

Fault tolerance:
 Spark's RDD-based architecture ensures fault tolerance by 

automatically recomputing lost data partitions.

•

Scalability:
 Spark can scale horizontally by adding more nodes to the cluster.

•

Unified platform:
 Spark provides a unified platform for batch processing, stream 

processing, machine learning, and graph processing.

•

Integration with other Spark components:
 Spark Streaming can seamlessly integrate 

with other Spark components, such as Spark SQL and MLlib.

Limitations of Spark Streaming

•

Latency:
 Micro-batch processing introduces latency, which may not be suitable for 

applications requiring extremely low latency.

•

Exactly-once semantics:
 Achieving exactly-once semantics in Spark Streaming can be 

complex and may require additional configuration.

•

Backpressure handling:
 Handling backpressure, where the input data rate exceeds 

the processing capacity, can be challenging in Spark Streaming.

Spark Structured Streaming

Spark Structured Streaming is a higher-level API built on top of the Spark SQL engine. It 

provides a more declarative and easier-to-use interface for stream processing. Structured 

Streaming treats a data stream as a continuously updating table, allowing users to apply SQL 

queries and DataFrame operations to the stream.

Key Features of Spark Structured Streaming

•

Declarative API:
 Structured Streaming provides a declarative API, making it easier to 

define stream processing pipelines.

•

End-to-end exactly-once semantics:
 Structured Streaming provides end-to-end 

exactly-once semantics, ensuring that each record is processed exactly once, even in 

the presence of failures.

•

Integration with Spark SQL:
 Structured Streaming seamlessly integrates with Spark 

SQL, allowing users to leverage SQL queries and DataFrame operations for stream 

processing.

•

Support for various data sources and sinks:
 Structured Streaming supports a wide 

range of data sources and sinks, including Kafka, Kinesis, and file systems.

Limitations of Spark Structured Streaming

•

Latency:
 While improved compared to Spark Streaming, Structured Streaming still 

relies on micro-batch processing, which can introduce latency.

•

Limited support for some advanced stream processing patterns:
 Structured 

Streaming may not support some advanced stream processing patterns as easily as 

other frameworks.

Apache Flink

Apache Flink is a stream processing framework designed for high-throughput, low-latency 

data processing. It is built from the ground up for stream processing and provides a more 

natural and efficient way to handle real-time data streams compared to Spark Streaming.

Flink Architecture

Flink processes data streams as continuous flows of events. It uses a dataflow programming 

model, where data is transformed by a series of operators. Flink's architecture is based on a 

distributed runtime that executes these operators in parallel across a cluster of machines.

Key Features of Flink

•

True stream processing:
 Flink is designed for true stream processing, processing data 

as it arrives without the need for micro-batches.

•

Low latency:
 Flink's stream processing architecture enables extremely low latency, 

making it suitable for applications requiring immediate responses.

•

Exactly-once semantics:
 Flink provides exactly-once semantics by default, ensuring 

that each record is processed exactly once, even in the presence of failures.

•

State management:
 Flink provides robust state management capabilities, allowing 

users to maintain stateful computations across multiple events.

•

Windowing:
 Flink supports a variety of windowing functions, allowing users to 

aggregate data over time windows.

•

Fault tolerance:
 Flink's fault tolerance mechanism ensures that the application can 

recover from failures without data loss.

Advantages of Flink over Spark Streaming

•

Lower latency:
 Flink's true stream processing architecture results in lower latency 

compared to Spark Streaming's micro-batch approach.

•

Better support for stateful computations:
 Flink's state management capabilities are 

more robust and efficient than those in Spark Streaming.

•

More natural stream processing model:
 Flink's dataflow programming model is more 

natural for stream processing than Spark Streaming's RDD-based approach.

Disadvantages of Flink

•

Smaller community:
 Flink has a smaller community compared to Spark, which may 

result in fewer available resources and support.

•

Steeper learning curve:
 Flink's programming model can be more complex to learn 

than Spark Streaming's.

Conclusion

Both Apache Spark and Apache Flink are powerful frameworks for real-time processing. 

Spark, with its Structured Streaming API, offers a unified platform for batch and stream 

processing, making it a good choice for organizations already invested in the Spark 

ecosystem. Flink, on the other hand, is specifically designed for stream processing and 

provides lower latency and better support for stateful computations. The choice between 

the two frameworks depends on the specific requirements of the application, including 

latency requirements, state management needs, and the existing infrastructure. For 

applications requiring extremely low latency and complex stateful computations, Flink is 

generally the preferred choice. For applications where near real-time processing is sufficient 

and integration with other Spark components is important, Spark Structured Streaming may 

be a better option.

Choose the appropriate processing method for data analysis.

Real-Time

Processing

Batch

Processing

Provides immediate

insights and actions

Processes data in

bulk over time

Seamlessly connects

with other Spark tools

Processes data in small

batches for near real-

time results

Unified platform Fault tolerance

Provides a single

platform for various

processing types

Ensures data integrity by

recomputing lost

partitions

Scalability

Allows horizontal

scaling by adding more

nodes

Micro-batch

processing

Integration with

other Spark

components

Key Features of Spark Streaming

Flink Features

Exactly-Once

Semantics

Low Latency State

Management

True Stream

Processing

Flink's architecture

enables extremely

low latency for

immediate

responses.

Flink ensures each

record is processed

exactly once, even

with failures.

Flink processes data

as it arrives, without

micro-batches.

Flink provides robust

state management

for stateful

computations.


